ALGEBRA AND GEOMETRY
cod. 18728

Academic year 2024/25
1° year of course - Second semester
Professors
Academic discipline
Geometria (MAT/03)
Field
Formazione matematico-fisica
Type of training activity
Basic
84 hours
of face-to-face activities
9 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

The aim of this course is to provide students with essential tools in Algebra, Linear Algebra and in Euclidean Geometry in the space; students are required also to apply their knowledge and understanding to problems concerning the spatial structure of real environment, graphics and computer science.

Prerequisites

- - -

Course unit content

This course is an introduction to different aspects of Algebra, Linear Algebra and Geometry.
The first part is devoted to Euclidean Geometry in the space (vectors, lines, planes), while the second part of the course is devoted to matrices and linear systems. In the third part we study vector spaces, linear maps and the diagonalization of linear operators. The course ends with group theory.

Full programme

GEOMETRY IN THREE-DIMENSIONAL SPACE

1. Vectors and their operations. Coordinates. Scalar product. Distances and angles. Vector product in R^3.

2. Three dimensional analytic geometry. Parametric and Cartesian equations of a line. Mutual position between two lines in the space; skew lines. Equation of a plane. Quadric surfaces.

VECTORS, MATRICES AND LINEAR SYSTEMS

3. The n-dimensional space R^n and its properties.

4. Matrices and their properties. Determinants: Laplace expansion and basic properties. Binet theorem. Row and column elementary operations on matrices. Computation of the inverse matrix. Rank of a matrix.

5. Linear systems: Gauss--Jordan method and Rouché--Capelli theorem.

6. Linear subspaces of R^n. Linear combinations of vectors: linear dipendence/indipendence. Generators, bases and dimension of a vector subspace.

LINEAR MAPS

7. Linear maps. Definition of kernel and image. Matrix representation of a linear map. Isomorphisms and inverse matrix.

8. Eigenvalues, eigenvector and eigenspaces. Characteristic polynomial. Algebraic and geometric multiplicity. Diagonalizable operators.

ARITHMETIC AND GROUP THEORY

9. Natural numbers; integers and their properties. Rational numbers; complex numbers and their properties.

10. Groups, subgroups, homomorphisms; kernel and image. Examples. The fields Z_p.

Bibliography

ALESSANDRINI, L., NICOLODI, L., GEOMETRIA E ALGEBRA LINEARE, CON ESERCIZI SVOLTI, ED. UNINOVA (PR) 2012.
Notes by the teacher.

Teaching methods

In the lectures we shall propose formal definitions and proofs, with significant examples and applications, and several exercises. Exercises are an essential tool in Linear Algebra; they will be proposed also in addition to lectures, in a guided manner.

Assessment methods and criteria

Learning is checked by a written exam and an oral interview. The student can also perform two written exams during the course, to avoid the final written exam.
In the written exam the student must exhibit basic knowledge related to Linear Algebra, Euclidean Geometry in the space and Group Theory. In the oral interview, the student must be able to prove properties of the studied structures, using an appropriate geometric and algebraic language and a proper mathematical formalism.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. 0521 90 5116

Quality assurance office

Education manager
dr. Claudia Buga
T. 0521 90 2842
Office e-mail: smfi.didattica@unipr.it
Manager e-mail: claudia.buga@unipr.it

President of the degree course

Prof. Alessandro Dal Palù
E. alessandro.dalpalu@unipr.it

Faculty advisor

Prof. Vincenzo Arceri
E. vincenzo.arceri@unipr.it

Career guidance delegate

Prof. Roberto Alfieri
E. roberto.alfieri@unipr.it

Tutor Proffesors

Prof. Enea Zaffanella
E. enea.zaffanella@unipr.it

Erasmus Delegates

Prof. Roberto Bagnara
E. roberto.bagnara@unipr.it
Student tutor dr. Anna Macaluso
E. anna.macaluso@studenti.unipr.it

Quality assurance manager

Prof. Roberto Alfieri
E. roberto.alfieri@unipr.it

Internships

Prof. Roberto Alfieri
E. roberto.alfieri@unipr.it

Tutor students

Tutor a.a. 2021-2022 dr. Francesco Manfredi
E. francescosaverio.manfredi@studenti.unipr.it

Student representatives: 
Greta Dolcetti 
Massimo Frati
Davide Tarpini