Learning objectives
The course is structured in modules, each module is focused on a applicative topic or a peculiar applications (eg Electrocardiogram, hearing and ear;); then the physical concepts strictly functional to the understanding of such applications or physical phenoma are introduced.The course will allow the student to know and understand some fundamental physical laws and IS Units, in relation to specific applications in the biomedical field, with particular reference to the bloodstream, musculoskeletal, cardiac electrophysiology and in relation to some diagnostic techniques. The student will use the gained knowledge and understanding in the daily relationship with the patient and in the use of the most common diagnostic techniques.The student at the end of the course, will have to demonstrate knowledge and understanding about:
the physical quantities and and the laws that describe the balance of a body;the laws which are the basis of the blood circulation and diseases such as aneurysm, stenosis or hypertension. Coulomb’s Law and the Electric Field; Potential Difference; Electrical Properties of the Heart ; The Current-Dipole Vector of the Heart as a Function of Time and Electrocardiographic Leads.- Effects of electric currents flowing through a human body respect to DC and AC current.- Wave phenomena connected with ultrasounds and ultrasounds applications.Furthermore, by applying the acquired knowledge and understanding, the student must be able, collaborating with other professionals, - to contribute to the correct performance of some diagnostic tests such as EGC, ultrasound and eco-Doppler, as well as common practices such as patient handling or pressure measurement.- to avoid and to prevent behaviors that could lead to pathophysiological effects of the electric current on the human body.
Prerequisites
- - -
Course unit content
The Course of Applied Physics is designed to give an understanding of the basic principles of physics.In particular the course is structured for the understanding of some topics and the related physics principles.The first lectures concern the definition of physical quantities such as force, mass, acceleration, force momentum as well as IS Units. Particular enphasis is given to levers in the human body and to the handling of loads. The second part of the course is devoted to the treatment of the laws of electrostatics and of the electrodynamics with respect to electrocardiogram measured signal, but also to the physiopathological effects of the electric current on the human body.The third part of the course deals with wave phenomena with particular attention to Eco-Doppler and Ecography diagnostic techniques.
Full programme
Physical quantities. Vectors and scalars. Units, dimensions. Acceleration. Acceleration, mass, Force of gravity, weight. Newton’s laws. Centre of gravity, barycenter, force momentum. Equilibrium state of a rigid body. Levers and applications to the human body. Fluids, Pressure, Stevino’s law; work, power and energy. Theorem of kinetic energy. Energy conservation law. Fluid Dynamics; Flow rate. Characteristics of an ideal fluid. Bernoulli's theorem. Applications of Bernoulli's theorem to blood circulation. Real fluids. Laminar flow. Turbulent flow. Reynolds number. Blood pressure measurement. Surface tension and capillarity.Elastic properties of a body, Hook’s law, Young's modulus. Elastic behavior of blood vessels and bones.
Electric charge. Coulomb's law. Electric field Electric potential. Electric dipole, dipole momentum, electrocardiogram principle and function. Effects of electric currents flowing through a human body respect to DC and AC current. Electric current: definition of resistance and capacitance, DC (direct current) and AC current. Ohm's laws. Serial and parallel resistors and capacitors.
Wave phenomena characteristic, acoustic waves. Physical principles of ultrasound, and ultrasound production, piezoelectric crystals. Doppler effect applied to hearing, and Eco-Doppler diagnostic techniques Electromagnetic spectrum; electromagnetic waves and geometric optics, index of refraction; law of reflection and refraction; lens, mirror and diopter systems. The human eye. Use the thin-lens equations to determine location, size, orientation, and nature of the images formed by simple lenses.
Bibliography
Slides;
Fisica Biomedica (Bersani - Bettati - Biagi - Capozzi - Feroci - Lepore - Mita - Ortalli - Roberti - Viglino - Vitturi)
Piccin editore
- Fisica applicata alle scienze Maediche
Gian Marco Contessa
Giuseppe augusto Marzo ; CEA
Teaching methods
The course will be held through lectures held on-site in compliance with safety standards, provided that further instructions on the ongoing health emergency are not implemented. Supporting material will be available on the specific, student-reserved platform (Elly) and will include slide presentations
The online learning platforms (Kahoot and Wooclap) will also be used. With Kahoot and Wooclap it is possible to create quizzes ideal for teaching, both remotely and face-to-face, integrating digital in the lessons.
Assessment methods and criteria
The assessment of achievement of the course objectives involves a written examination with multiple-choice questions, including through the use of the wooclap and Elly platform.
The duration of the written test is 1 hour. The written examination will serve as a proficiency testing.
If the adoption of the online mode is considered necessary for the profit examinations, the following procedure will be followed:
remote quizzes, through the Elly platform and Teams platform (guide http://selma.unipr.it/).
In this case the test consists of 10 multiple choice /multiple answer questions on the course contents (reference texts + documents uploaded to Elly during the course). There is no penalty for incorrect answers.
Students with SLD / BSE must first contact Le Eli-che: support for students with disabilities, D.S.A., B.E.S. (https://sea.unipr.it/it/servizi/le-eli-che-supporto-studenti-con-disabilita-dsa-bes).
Using multiple choice /multiple answer questions about the contents of the course it will be determined whether the student has achieved the goal of knowledge and understanding of content about specific biomedical applications. It will be also determined whether the student has achieved the aim of applying the knowledge acquired to comprehension of the principles of diagnostic techniques presented during the course.
Obtaining proficiency will be published in esse3
Please note that registration for the exam is mandatory
Other information
- - -
2030 agenda goals for sustainable development
Goal 4: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all