ANALISI MATEMATICA 2 1° MODULO
cod. 1003931

Anno accademico 2024/25
2° anno di corso - Primo semestre
Docente
Filippo CAGNETTI
Settore scientifico disciplinare
Analisi matematica (MAT/05)
Ambito
Discipline matematiche e informatiche
Tipologia attività formativa
Base
56 ore
di attività frontali
8 crediti
sede: PARMA
insegnamento
in

Modulo dell'insegnamento integrato: ANALISI MATEMATICA 2

Obiettivi formativi


Conoscenze e capacità di comprendere: Alla fine del percorso di insegnamento lo studente dovrà conoscere le definizioni e risultati fondamentali dell'analisi in più variabili, e dovrà essere in grado di comprendere come questi entrano nella risoluzione di problemi.
Capacità di applicare conoscenza e comprensione: Lo studente dovrà essere in grado di applicare le conoscenze acquisite per la risoluzione di problemi anche mediamente elaborati, e di comprenderne le relazioni col materiale appreso in altri corsi.
Autonomia di giudizio: Lo studente dovrà essere in grado di valutare la coerenza e correttezza deille dimostrazioni prodotte durante l'esame scritto.
Capacità comunicative: Lo studente dovrà essere in grado di comunicare in modo chiaro e preciso, adatto a uno scienziato in stadio intermedio di formazione.
Capacità di apprendimento: Collegare i diversi argomenti trattati con le discipline del primo anno.

Prerequisiti


Analisi per funzioni di una variabile; geometria lineare; algebra lineare.

Contenuti dell'insegnamento

Norme.
Limiti e continuità per funzioni di più variabili reali.
Curve.
Calcolo differenziale per funzioni di più variabili.
Teorema del Dini e conseguenze.
Integrali multipli.
Potenziali e forme differenziali.
Quasi tutti gli enunciati vengono dimostrati.
Per studenti di Fisica, elementi di equazioni differenziali

Programma esteso


Norme, distanze, spazi metrici e spazi normati.

Limiti e continuità per funzioni di più variabili reali.

Curve regolari, regolari a tratti, semplici, equivalenti, cammini, versore tangente a un cammino regolare, lunghezza delle curve, parametro lunghezza d'arco, integrale di una funzione su un cammino; lavoro di un campo lungo una curva.

Calcolo differenziale per funzioni di più variabili: derivate direzionali e loro interpretazione geometrica, derivate parziali, differenziale, teorema del differenziale totale, regole di differenziazione, gradiente, piano tangente e interpretazione geometrica, derivate successive, teorema di Schwarz, formula di Taylor, forme quadratiche, massimi e minimi relativi.

Teorema del Dini, teorema della funzione inversa, superfici lisce, teorema dei moltiplicatori.Integrali multipli: definizione, teorema di riduzione, teorema di cambiamento di variabili. Integrazione in due e in molte dimensioni. Integrazione su superfici.

Potenziali e forme differenziali: potenziale e potenziale vettore negli aperti stellati, semplicemente connessi, generali. Forme differenziali lineari, forme esatte e forme chiuse. Cammini e circuiti. Integrale di forme differenziali su cammini orientati.
Per studenti di Fisica: equazioni differenziali; teorema di esistenza e teorema di unicità; equazioni a variabili separabili; equazioni lineari del primo e secondo ordine; cenni di studio qualitativo.

Bibliografia

Il corso segue da vicino il testo

E. Acerbi e G. Buttazzo, Secondo corso di analisi matematica. Universitas Parma (2023) o Pitagora Bologna (2016).

Può però essere utilizzato qualunque testo di Analisi 2, ad esempio

G. Prodi: Lezioni di Analisi Matematica II. ETS Pisa (1974)

W. Fleming: Functions of several variables. Providence 1965.
Tramite Elly gli studenti hanno a disposizione gli esami (risolti) degli anni scorsi e materiale didattico aggiuntivo.

Metodi didattici


L'insegnamento si svolge attraverso lezioni frontali
in cui si affrontano
aspetti sia teorici che applicativi. Le esercitazioni, svolte in collaborazione con gli studenti, consentono di verificare la comprensione dell’insegnamento impartito e le competenze acquisite da parte degli studenti stessi. Le esercitazioni sono programmate in modo che gli studenti possano realizzare praticamente le soluzioni dei problemi delineati in forma teorica durante le lezioni.

Modalità verifica apprendimento


È obbligatorio iscriversi all'esame via Esse3.
La verifica finale consiste in una prova scritta seguita da una prova orale.
Lo studente può accedere alla prova orale solo se supera la prova scritta.
La prova scritta dura 2 ore e contiene 3 domande aperte, a ciascuna delle quali è attribuito un punteggio fino a 10. Lo studente dovrà dimostrare abilità di calcolo e capacità di collegamento tra le diverse conoscenze. Ad ogni domanda
verrà attribuito un punteggio che tiene conto di correttezza di esecuzione,
modalità di esecuzione e chiarezza espositiva. Per il superamento della prova scritta lo studente dovrà ottenere almeno 15 punti. L'esito della prova viene comunicato tramite Esse3, generalmente entro 2 giorni.
La prova orale consiste in una discussione sullo svolgimento della prova
scritta nonché in una verifica dell'apprendimento e comprensione degli
aspetti teorici del corso. Il voto della prova orale varia da -15 (gravissime e diffuse lacune su concetti fondamentali) a +7 (ottima e sicura conoscenza anche di argomenti collaterali) e si somma a quello della prova scritta. L'esito viene comunicato immediatamente.

Altre informazioni

Obiettivi agenda 2030 per lo sviluppo sostenibile