Obiettivi formativi
Il modulo di Statistica per la ricerca sperimentale e tecnologica si pone l'obiettivo di introdurre lo studente alla logica del pensiero statistico e alla sua applicazione nella pratica reale. L'esposizione degli argomenti sarà orientata a problemi concreti di analisi e di ricerca in particolar modo tratti dalla letteratura medica.
Prendendo come inizio la moltitudine di informazioni da cui siamo investiti quotidianamente, il corso si propone di fornire allo studente, in modo semplice, gli strumenti statistici necessari per descrivere e analizzare i dati, estrarre dai dati informazioni utili e prendere decisioni consapevoli.
Verrà data particolare enfasi al ragionamento statistico, all'interpretazione e al processo decisionale, a tale fine si insisterà più sulla comprensione concettuale che sul calcolo meccanico, anche alla luce dell'ampia scelta di software disponibile per l'analisi. La teoria verrà esplicitata mediante esercizi pratici e casi didattici.
L’obiettivo finale del corso sarà pertanto che lo studente apprenda il “saper fare” oltre che “il conoscere”.
Prerequisiti
- - -
Contenuti dell'insegnamento
La prima parte del corso introdurrà la logica della pianificazione statistica e del disegno sperimentale.
Verranno introdotti o richiamati i concetti di calcolo delle probabilità e calcolo combinatorio che serviranno nel seguito del corso. In questa fase verranno trattate le principali distribuzioni di probabilità tra cui la distribuzione binomiale, la distribuzione di Poisson e le distribuzioni Normale e Normale standard.
Nella seconda parte del corso verranno affrontati i metodi della statistica descrittiva. Verrà mostrato come riconoscere la tipologia dei dati e come riassumerli in opportuni indici.
Lo studente apprenderà come calcolare le misure di posizione (media, mediana, moda), variabilità (varianza, deviazione standard), il coefficiente di variazione (CV) , i percentili e il loro uso.
Verrà illustrato l'uso dei grafici principali e dei grafici meno comuni (mosaic plot, box percentile plot, parallel-violin plot, ecc)
Nella parte finale del corso verrano trattati i principi generali dell’inferenza statistica.
Verrano introdotti concetti di distribuzione campionaria, errore di I e II tipo, potenza di un test e curva operativa. Verranno quindi trattati :
test parametrici - test t di Student, ANOVA a 1 e 2 criteri di classificazione.
test non parametrici : - test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Cenni di Statistica multivariata
Programma esteso
Introduzione : statistica medica e discipline affini. La logica e la pianificazione statistica. Cenni di calcolo combinatorio: permutazioni, disposizioni, combinazioni. Applicazioni.
Cenni di calcolo delle probabilita' : probabilita' semplice e composta, teorema di Bayes.
Odds. Odds ratios. Likelihood ratios. applicazioni. Le tavole di contingenza per i test di screening.
Distribuzioni di probabilita' : distribuzione binomiale, distribuzione di Poisson, distribuzione Normale e Normale standard. Tabelle e loro uso.
Come riassumere i dati. Scale di misura.
Misure di posizione, ordine e variazione. Indici di tendenza centrale, media, mediana, moda.
Indici di variabilita', varianza, deviazione standard, CV. Percentili e loro uso.
Principi generali della inferenza statistica. La distribuzione campionaria. Ipotesi e test di ipotesi. Errore di I e II tipo. Potenza di un test e curva operativa.
Power Analysis e stima della dimensione campionaria.
Test parametrici : test t di Student, Analisi della varianza ad 1 e 2 criteri di classificazione. Test non parametrici : test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Regressione lineare e correlazione. Regressione multipla. Regressione logistica.
Esercitazioni al computer con il software R, Jasp, Jamovi, IBM-SPSS.
Bibliografia
Appunti delle lezioni.
W.W. Daniel : Biostatistica – Ed. Edises
M.M Triola, M.F. Triola : Fondamenti di Statistica, Ed. Pearson
A. Field. J. Miles, Z. Field : Discovering Statistics Using R, Ed. SAGE
Michael J. Crawley "The R book" , Ed. Wiley
Risorse e link internet
Metodi didattici
Le lezioni si svolgeranno in presenza, nel rispetto degli standard di sicurezza. Il materiale didattico sarà depositato sulla specifica piattaforma ad accesso riservato agli studenti (Elly) e comprenderà presentazioni iconografiche, audio-video di supporto o videoregistrazione delle lezioni.
Durante le lezioni verranno illustrati e commentati gli argomenti contenuti nel programma del modulo. Al termine della teoria relativa ad ogni argomento seguiranno esercizi che ne illustreranno l’applicazione in pratica. Verrà descritto il procedimento e l’esecuzione passo passo dei calcoli necessari. Verrà inoltre mostrato sia lo svolgimento manuale, sia la soluzione ottenuta mediante l’utilizzo di apposito software.
Verranno particolarmente incoraggiati l’utilizzo del software statistico open source “R” e del software libero Epi Info.
Modalità verifica apprendimento
L’accertamento del raggiungimento degli obiettivi previsti dal corso prevede un esame scritto. Mediante domande aperte e problemi riguardanti i contenuti del corso verrà accertato se lo studente ha raggiunto l’obiettivo della conoscenza e della comprensione dei contenuti riguardanti specifiche applicazioni biomediche.
La consultazione del materiale didattico sarà consentito.
Gli Studenti con disabilità, D.S.A., B.S.E. devono preventivamente contattare per un supporto il Centro Accoglienza ed Inclusione (CAI) (https://cai.unipr.it/).
Altre informazioni
- - -
Obiettivi agenda 2030 per lo sviluppo sostenibile
codice obiettivi: 1; 2; 4