LABORATORIO DI INTELLIGENZA ARTIFICIALE
cod. 1009073

Anno accademico 2024/25
2° anno di corso - Primo semestre
Docente
Federico BERGENTI
Settore scientifico disciplinare
Informatica (INF/01)
Ambito
Discipline informatiche
Tipologia attività formativa
Caratterizzante
48 ore
di attività frontali
6 crediti
sede:
insegnamento
in ITALIANO

Obiettivi formativi

Il corso offre le basi per modellare e implementare algoritmi e sistemi per la risoluzione di problemi di intelligenza artificiale.
Il corso prevede lezioni teoriche che introducono ad alcune tematiche scelte relative all’apprendimento automatico e al ragionamento automatico. In più, il corso prevede lezioni di laboratorio per permettere agli studenti di compiere esperienze di laboratorio relative agli argomenti affrontati.

Con riferimento agli Indicatori di Dublino:

Conoscenza e capacità di comprensione
Il corso introduce i concetti relativi allo sviluppo, applicazione e validazione di algoritmi di intelligenza artificiale per l’apprendimento automatico e la ricerca di soluzioni. In particolare, vengono tratti algoritmi di apprendimento automatico supervisionato e non supervisionato, algoritmi di ricerca e algoritmi di analisi di sequenze.

Capacità di applicare conoscenza e comprensione
Le conoscenze teoriche e pratiche presentate vengono introdotte in prospettiva sia della corretta applicazione degli algoritmi allo stato dell’arte ed interpretazione dei risultati ottenuti, sia nella comprensione delle loro motivazioni per lo sviluppo di nuove soluzioni computazionali.

Autonomia di giudizio
Un approccio critico sull’utilizzo e la comprensione degli attuali strumenti per la risoluzione di problemi di intelligenza artificiale è tra gli obbiettivi principali del corso. In particolare, identificare la corretta metodologia e valutarne l’impatto sul caso di applicazione specifico.

Abilità comunicative
Le discussioni sui diversi metodi per risolvere i problemi proposti consentono di migliorare le capacità di comunicazione attraverso lo sviluppo di un progetto su tematiche stabilite dal docente e che viene affrontato in singolo o in gruppo. I risultati del progetto vengono quindi esposti al docente.

Capacità di apprendimento
L’utilizzo autonomo di risorse esterne e la consultazione di letteratura scientifica e di strumenti pratici esistenti permette di sviluppare una capacità di apprendimento autonoma. Lo studente acquisisce la capacità di adattarsi al problema e di applicare I modelli più adatti per la risoluzione.

Prerequisiti

- - -

Contenuti dell'insegnamento

Il corso offre la possibilità di applicare alcuni approcci e relativi metodi dell'intelligenza artificiale a problemi concreti. Il corso si caratterizza per la proposta di esperienze di laboratorio che verranno concordate con gli studenti in base alla loro preparazione e ai loro interessi. Indipendentemente dalle esperienze di laboratorio scelte all'inizio del corso, gli studenti avranno la possibilità di utilizzare Python ed i relativi strumenti dedicati all'intelligenza artificiale.

Programma esteso

Il programma dettagliato dipende dalla preparazione specifica degli studenti e dai loro interessi. Nella lezione introduttiva al corso verranno presentate, discusse e messe in ordine di priorità le possibili tematiche che potranno essere affrontate.

Bibliografia

Stuart, Norvig. Intelligenza artificiale: un approccio moderno. Pearson, 2016

Metodi didattici

Lezioni frontali, laboratorio in aula e progetto di gruppo o singolo.

Modalità verifica apprendimento

Esame orale più progetto.

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Contatti

Numero verde

800 904 084

Segreteria studenti


E. segreteria.scienze@unipr.it

Servizio per la qualità della didattica

Manager della didattica:
Dott.ssa Claudia Buga

T. 0521 902842
E. smfi.didattica@unipr.it
E. claudia.buga@unipr.it

Presidente del corso di studio

Prof. Vincenzo Bonnici
E. vincenzo.bonnici@unipr.it

Delegato orientamento in ingresso

Prof. Vincenzo Arceri
E. vincenzo.arceri@unipr.it

Delegato orientamento in uscita

Prof. Enea Zaffanella
E. enea.zaffanella@unipr.it

Docenti tutor

Prof. Enea Zaffanella
E. enea.zaffanella@unipr.it
Prof. Alessandro Dal Palù
E. alessandro.dalpalu@unipr.it

Delegati Erasmus

Prof. Roberto Bagnara
E. roberto.bagnara@unipr.it
Studente tutor dott.ssa Anna Macaluso
E. anna.macaluso@studenti.unipr.it

Responsabile assicurazione qualità

Prof. Roberto Bagnara
E  roberto.bagnara@unipr.it

Tirocini formativi

Referente prof. Enea Zaffanella
E. enea.zaffanella@unipr.it

Referente per le fasce deboli

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Rappresentanti degli studenti in CCSU 
 

  • Lorenzo Copelli
  • Alessandro Frasconi
  • Marcello Galli
  • Samuel Seligardi