CALCULUS 1 PAR. 1
cod. 1003929

Academic year 2024/25
1° year of course - First semester
Professor
Luca Francesco Giuseppe LORENZI
Academic discipline
Analisi matematica (MAT/05)
Field
Formazione matematica di base
Type of training activity
Basic
56 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in ITALIAN

Integrated course unit module: CALCULUS 1

Learning objectives

Knowledge and understanding.

At the end of the lectures, students should have acquired very good knowledge and understanding of the numerical field N, Q, Z and R, of the numerical sequences and of the differential calculus for functions of one variable.
This course will contribute to makng students able to understand advanced texts in Mathematics and to consult research papers in mathematics.


Applying knowledge and understanding.

By means of the classroom exercises students learn how to apply the theoretical knowledges to solve concrete problems, such as optimization problems.


Making judgements.

Students must be able to evaluate coherence and correctness of results obtained by themselves or by others.
Students should be also able to produce precise mathematical arguments clearly identifying the assumptions and the conclusions.


Communication skills.

Students must be able to communicate in a clear and precise way mathematical statements in the field of study, also in a context broader than mere calculus. Through the front lectures and the assistance of the teacher, the students acquire the specific and appropriate scientific vocabulary.
This course contributes to making the students able to work in groups and to work with a good degree of autonomy.


Learning skills.

The student who has attended the course Analisi Matematica 1, is able to deepen autonomously his/her knowledge of numerical sequences, differential calculus for functions of one variable, starting from the basic and fundamental knowledges provided by the course. He/She will be also able to consult specialized textbook, even outside the topics illustrated during the lectures. This to facilitate the learning of the other activities of the degree course in Mathematics, which use notions from Mathematical Analysis. This course contributes to furnishing a flexible mindset to the student, which helps him/her to easily enter into the labour market, being able to face new problems. Moreover, the course contributes, together with other courses of the bachelor programme, to making the student able to acquire new knowledges in the mathematical fields but also in the labour market field, through an autonomous study. Finally, the course contributes to making the student able to continue the studies in Mathematics or in other scientific disciplines with a high degree of autonomy.

Prerequisites

Elementi di Matematica related to the whole course Analisi Matematica 1.

Course unit content

The course aims at providing students with the fundamental notions of the numerical sets and with the fundamental concepts of infinitesimal calculus for functions of one variable and of numerical sequences.

Full programme

1. Real numbers.

Axiomatic definition of real numbers, maximum, minimum, least upper and greatest lower bound; integer part and modulus of real numbers; powers, roots, n-th roots of non-negative numbers; rational and irrational numbers and their density in the set of all the real numbers; intervals, distance; neighborhoods, accumulation points, isolated points, interior points; closed sets, open sets, frontier. The principle of induction.


2. Sequences of real numbers.

The concept of numerical sequence, convergent and divergent sequences, uniqueness of the limit; infinitesimal sequences; subsequences, a criterion for the non existence of the limit of a sequence; limit of the sum, product, quotient of sequences, permanence of the sign, comparison theorems; monotone sequences; the Nepero’s number; sequences defined by recurrence; Cauchy sequences; Bolzano-Weierstrass theorem.


3. Functions and limits.

One to one, surjective and bijective functions; inverse functions; graphs; monotone functions; exponential, and logarithmic functions. Limits of functions with real values, uniqueness of the limit, limits of the restrictions; limit of the sum, product, quotient of two functions; permanence of the sign, comparison theorems; right and left limits; limits of monotone functions.

4. Continuity.

The concept of continuous function, restrictions of continuous functions, composition of continuous functions; sum, product, quotient of continuous functions; examples of continuous functions; discontinuity, examples of discontinuous functions; zeroes of continuous functions defined in an interval; continuity and intervals; continuity and monotonicity; continuity of inverse functions; Weierstrass theorem.


5. Differential calculus.

Incremental ratio, derivatives, right and left derivatives; geometrical meaning of the derivative; derivation rules: derivatives of the sum, product, quotient of two functions; derivatives of composite functions and inverse functions; derivatives of elementary functions; relative maxima and minima; stationary points; Rolle's theorem and Lagrange's theorem and their geometrical interpretation, Cauchy's theorem and de l'Hopital's theorem. Taylor expansions of smooth enough functions with Peano's and Lagrange's form of remainder.

Bibliography

Theory
Teoria
D. Addona, B. Gariboldi, L. Lorenzi: AM1 Analisi Matematica 1. Società editrice Esculapio 2012.

Exercises
D. Addona, B. Gariboldi, L. Lorenzi: AM1 Analisi Matematica 1. Esercizi. Società editrice Esculapio 2013.

Teaching methods

The course schedules 5 hours per week of lectures and classroom exercises. During the lectures the fundamental properties of the numerical sets will be illustrated and basic results of calculus for functions of one variable will be analyzed and discussed. Students will be provided also with the basic results on sequences of real numbers. The classroom exercises aim at showing how and where the abstract results can be applied to make the students understand better the relevance of what they are studying.
The didactic activities of the first half of the course are developped also with the help of a tablet PC which projects on a screen the notes the teacher is writing. A the end of each lesson, a pdf file with the notes of the lecture is uploaded on the elly website. Also a video is uploaded to elly which contains the screen shooting and the audio of the lectures. Lectures and the classroom exercises will be available also online in straming for those students who prefer to attend them at home.

Assessment methods and criteria

The exam of the course Analisi Matematica 1 consists of a written part and an oral part in different dates.
The written part is based on exercises (indicatively 3 or 4) and it is aimed at evaluating the skills of the student in applying the abstract results proposed during the course to some concrete situations. The maximum score of the written part of the exam is 30. The written part is successful if the student reaches a score non inferior to 18.

The oral part is aimed at evaluating 1) the knowledge of the abstract results seen during the course and their proofs 2) the correct use of the mathematical terms, 3) the knowledge of those arguments which have not been included into the written test. The final vote will be given by a
weighted average of the votes of the written and oral part of the exam.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof. Emilio Acerbi
E. emilio.acerbi@unipr.it

Prof. Marino Belloni
E. marino.belloni@unipr.it

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Costantino Medori
E. costantino.medori@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Erasmus delegates

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Quality assurance manager

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Tutor students

Dott. Matteo Mezzadri
E. matteo.mezzadri@studenti.unipr.it