MACHINE LEARNING IN BIOMEDICAL RESEARCH
cod. 1012482

Academic year 2024/25
2° year of course - Second semester
Professor
Ludovica LEO
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Field
A scelta dello studente
Type of training activity
Student's choice
24 hours
of face-to-face activities
3 credits
hub:
course unit
in ITALIAN

Learning objectives


The course aims to provide a general knowledge of the main Machine Learning (ML) methodologies, with a particular focus on the biomedical field. Specifically, the course is designed to introduce the student to the basic rules of machine learning, as well as the knowledge of the necessary tools to manipulate data independently, extract useful information, and comprehend its significance.

Prerequisites


None. However, basic knowledge of statistics and linear algebra is recommended.

Course unit content


-Big Data and Artificial Intelligence
-Machine Learning (ML)
- ML applications in the biomedical field.
-Deep Learning (DL)
-DL applications in the biomedical field

Full programme


-Big Data: definitions; types of data
-Introduction to Artificial Intelligence
-Machine Learning: definitions and datasets; supervised, semi-supervised and unsupervised learning; classification, regression and clustering; overfitting/underfitting; ML algorithms.
- ML applications in the biomedical field and in radiology (radiomics)
-Deep learning: neural networks; DL tasks; DL algorithms.
- DL applications in the biomedical field
- Computer exercises with the open-source software “Orange Data Mining”.

Bibliography


Teaching material on the Elly platform.

Teaching methods


Classroom teaching and computer lab on the “Orange Data Mining” software.

Assessment methods and criteria


Written exam, mainly consisting in multiple-choice questions.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Segreteria studenti

E. [email segreteria @unipr] (modificare link a email)
T. +39 0521 000000

Servizio per la qualità della didattica

Manager della didattica:
[titolo] [nome] [cognome]

T. +39 0521 000000
E. servizio [email @unipr] (modificare link a email)
E. del manager [email @unipr] (modificare link a email)

Presidente del corso di studio

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegato orientamento in ingresso

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegato orientamento in uscita

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Docenti tutor

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegati Erasmus

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)
[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Referente assicurazione qualità

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Tirocini formativi

E. [email @unipr] (modificare link a email)

Studenti tutor

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)