Obiettivi formativi
Conoscenze e capacità di comprensione: il corso vuole fornire agli studenti gli strumenti per progettare i materiali in funzione dell'applicazione richiesta, lavorando su più livelli: sintetico, strutturale, morfologico, integrazione nei manufatti finali. Il focus è sui materiali funzionali con una parte apposita dedicata ai materiali strutturali.
Conoscenza e capacità di comprensione applicate: lo studente dovrà essere in grado di applicare le conoscenze teoriche acquisite per utilizzarle in ambito lavorativo nel campo dei materiali con particolare riferimento alla capacità di progettare un materiale in funzione dell'applicazione richiesta.
Lo studente dovrà essere inoltre in grado di:
a) memorizzare una serie di nozioni fondamentali (capacità di apprendere)
b) correlarle fra loro (autonomia di giudizio)
c) utilizzarle come base teorica per affrontare argomenti di natura chimica e ambientale non necessariamente trattati nel corso ma ad esso attinenti (autonomia di giudizio)
d) esporle in modo organico utilizzando in linguaggio scientifico appropriato (abilità comunicative).
Prerequisiti
Conoscenze di base di chimica dei polimeri, chimica organica e chimica fisica.
Contenuti dell'insegnamento
Finalità del corso:
I materiali rappresentano uno dei settori avanzati della ricerca di base ed applicata in campo chimico. Attraverso lo studio di tre classi di materiali funzionali, il presente corso vuole illustrare la metodologia di lavoro e la multidisciplinarità richieste dalla ricerca nel campo dei materiali.
Per ogni classe verranno discussi gli aspetti fisici (introduzione ai principi fisici fondamentali dei fenomeni studiati), chimici (progettazione, sintesi, caratterizzazione, rapporto proprietà-struttura) ed applicativi (possibili campi di applicazione, prestazioni, compatibilità dei materiali con i cicli produttivi dei manufatti).
Programma esteso
I materiali rappresentano uno dei settori avanzati della ricerca di base ed applicata in campo chimico. Attraverso lo studio di alcune classi di materiali funzionali, il presente corso vuole illustrare la metodologia di lavoro e la multidisciplinarità richieste dalla ricerca nel campo dei materiali.
Per ogni classe verranno discussi gli aspetti fisici (introduzione ai principi fisici fondamentali dei fenomeni studiati), chimici (progettazione, sintesi, caratterizzazione, rapporto proprietà-struttura) ed applicativi (possibili campi di applicazione, prestazioni, compatibilità dei materiali con i cicli produttivi dei manufatti).
Concetti introduttivi: funzione via organizzazione, autoassemblaggio, autoorganizzazione, trasferimento delle proprietà desiderate dal livello molecolare a quello macroscopico. Come la Natura realizza i materiali. Interazioni deboli e loro quantificazione (ITC).
Cristalli liquidi: definizione e proprietà fisiche. Mesofasi: nematica, smettica, colonnare, colesterica. Sintesi. Rapporto proprietà-struttura. Caratterizzazione chimico-fisica. Proprietà elettriche. Polimeri liquido cristallini. Applicazioni: displays piatti, pannelli ottici, termocromismo, ecc.
Self-assembled monolayers (SAM) e film Langmuir-Blodgett (LB): definizione. Caratteristiche molecolari richieste per formare SAM e film LB. Termodinamica e cinetica di formazione. Esempi di progettazione e sintesi di composti per SAM e LB. Tecniche di deposizione e di caratterizzazione. Proprietà funzionali di SAM e film LB.
Polimeri conduttori e semiconduttori: teoria delle bande: solitoni, polaroni e bipolaroni. Conduttività nei composti organici. Drogaggio. Sintesi e proprietà conduttrici di polacetilene, polipirrolo, polianilina, politiofene. Applicazioni: displays OLED.
Metodi avanzati di polimerizzazione per la creazione di polimeri funzionali: NMP, ATRP, RAFT, ADMET, ROMP.
Materiali porosi organici e metallo-organici e loro applicazioni nello adsorbimento, separazione e sensing. Preparazione, caratterizzazione e applicazioni di vari materiali microporosi avanzati quali metal organic frameworks (MOFs), covalent organic frameworks (COFs) e altri materiali porosi organici emergenti.
Bibliografia
Dispense e tutorials forniti dal docente. Testo di riferimento: Modern Physical Organic Chemistry di E. V. Anslyn e Denis A. Dougherty, University Science Books, ISBN 1‐891‐38931‐9.
Metodi didattici
Il corso si svolge in 76 ore di lezioni frontali con tutorials guidati per illustrare l'applicazione dei concetti ai casi reali e una flipped class finale per insegnare come inquadrare e proporre soluzioni a problemi di ricerca.
Modalità verifica apprendimento
Esame scritto ed orale, da svolgersi in inglese o italiano a scelta dello studente.
La verifica dell’apprendimento comprende una prova scritta con domande aperte sui principali argomenti presentati nel corso. Questo tipo di verifica permette di determinare sia in valore assoluto che comparativo 1) la padronanza degli argomenti; 2) la capacità di rispondere puntualmente a domande specifiche; 3) la capacità di esposizione; 4) la proprietà del linguaggio scientifico.
Ad ogni domanda verrà assegnato un punteggio da 0 a 5, eventualmente corretto per un coefficiente di difficoltà dipendente dalla natura della domanda. I singoli punteggi verranno poi sommati e scalati per essere riportati alla votazione in trentesimi.
Ad essa seguirà una prova orale che verterà sulla capacità degli studenti di applicare le nozioni apprese alla risoluzione di problemi reali. Il voto finale sarà la media pesata del voto dello scritto a cui si sommano da 0 a 3 punti dell'orale, il tutto in trentesimi.
La flipped class è a partecipazione volontaria. Gli studenti che prenderanno parte e supereranno la flipped class, che sarà possibile solo in presenza, saranno esentati dall’esame orale.
Altre informazioni
Il materiale didattico è disponibile in rete.
I docenti ricevono gli studenti per chiarimenti e discussioni, previo appuntamento.
Le date degli appelli verranno concordate con gli studenti. Si prevedono almeno 5 appelli per sessione.
Obiettivi agenda 2030 per lo sviluppo sostenibile